From Wikipedia, the free encyclopedia
Size of this preview: 623 × 479 pixels Full resolution (750 × 577 pixels, file size: 28 KB, MIME type: image/png)
|
This is a file from the Wikimedia Commons. The description on its description page there is shown below.Commons is a freely licensed media file repository. You can help.
|
A vector version of this image (SVG) is available. It should be used in place of this raster image when superior.
Image:Greenhouse Effect.png Image:Greenhouse Effect.svg
For more information about vector graphics, read about Commons transition to SVG. There is also information about MediaWiki's support of SVG images.
Deutsch | English | Español | Français | Galego | עברית | Magyar | Italiano | 日本語 | 한국어 | Lietuvių | Polski | Português | Русский | Српски / Srpski | Українська | +/- |
|
Description
This figure is a simplified, schematic representation of the flows of energy between space, the atmosphere, and the Earth's surface, and shows how these flows combine to trap heat near the surface and create the greenhouse effect. Energy exchanges are expressed in watts per square meter (W/m2) and derived from Kiehl & Trenberth (1997).
The sun is ultimately responsible for virtually all energy that reaches the Earth's surface. Direct overhead sunlight at the top of the atmosphere provides 1366 W/m2; however, geometric effects and reflective surfaces limit the light which is absorbed at the typical location to an annual average of ~235 W/m2. If this were the total heat received at the surface, then, neglecting changes in albedo, the Earth's surface would be expected to have an average temperature of -18 °C (Lashof 1989). Instead, the Earth's atmosphere recycles heat coming from the surface and delivers an additional 324 W/m2, which results in an average surface temperature of roughly +14 °C .
Of the surface heat captured by the atmosphere, more than 75% can be attributed to the action of greenhouse gases that absorb thermal radiation emitted by the Earth's surface. The atmosphere in turn transfers the energy it receives both into space (38%) and back to the Earth's surface (62%), where the amount transferred in each direction depends on the thermal and density structure of the atmosphere.
This process by which energy is recycled in the atmosphere to warm the Earth's surface is known as the greenhouse effect and is an essential piece of Earth's climate. Under stable conditions, the total amount of energy entering the system from solar radiation will exactly balance the amount being radiated into space, thus allowing the Earth maintain a constant average temperature over time. However, recent measurements indicate that the Earth is presently absorbing 0.85 ± 0.15 W/m2 more than it emits into space (Hansen et al. 2005). This increase, associated with global warming, is believed to have been caused by the recent increase in greenhouse gas concentrations.
Copyright
This figure was created by Robert A. Rohde from published data and is part of the Global Warming Art project.
Image from Global Warming Art
This image is an original work created for Global Warming Art.
Permission is granted to copy, distribute and/or modify this image under either:
- The GNU Free Documentation License Version 1.2; with no Invariant Sections, Front-Cover Texts, or Back-Cover Texts.
- The Creative Commons Attribution-NonCommercial-ShareAlike License Version 2.5
Please refer to the image description page on Global Warming Art for more information
|
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 only as published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled " Text of the GNU Free Documentation License."
Català | English | Español | Français | 日本語 | Polski | Português | Русский | Tiếng Việt | 中文(简体) | 中文(繁體) | +/- |
References
- Kiehl, J. T. and Trenberth, K. E. (1997). "Earth's Annual Global Mean Energy Budget". Bulletin of the American Meteorological Association 78: 197-208.
- Daniel A. Lashof (1989). "The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change". Climatic Change 14 (3): 213-242.
- James Hansen, Larissa Nazarenko, Reto Ruedy, Makiko Sato, Josh Willis, Anthony Del Genio, Dorothy Koch, Andrew Lacis, Ken Lo, Surabi Menon, Tica Novakov, Judith Perlwitz, Gary Russell, Gavin A. Schmidt, Nicholas Tausnev (2005). "Earth's Energy Imbalance: Confirmation and Implications". Science 308 (5727): 1431-1435.
File history
Click on a date/time to view the file as it appeared at that time.
|
Date/Time |
Dimensions |
User |
Comment |
current |
01:19, 23 June 2006 |
750×577 (28 KB) |
Pflatau |
|
File links
The following pages on Schools Wikipedia link to this image (list may be incomplete):