Image:KleinBottle-01.png

From Wikipedia, the free encyclopedia

Wikimedia Commons logo This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help.

Contents

Summary

Standard immersion of a Klein bottle into R3. Made with Mathematica.

See also

Image:Klein bottle.svg

Licensing

Public domain
I, the copyright holder of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Asturianu | Български | Català | Cebuano | Česky | Cymraeg | Dansk | Deutsch | Eʋegbe | Ελληνικά | English | Español | Esperanto | Euskara | Estremeñu | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Kurdî / كوردی | Latina | Lietuvių | Latviešu | Magyar | Македонски | Bahasa Melayu | Nederlands | ‪Norsk (bokmål)‬ | ‪Norsk (nynorsk)‬ | 日本語 | Polski | Português | Ripoarisch | Română | Русский | Shqip | Slovenčina | Slovenščina | Српски / Srpski | Suomi | Svenska | ไทย | Tagalog | Türkçe | Українська | Tiếng Việt | Walon | ‪中文(简体)‬ | ‪中文(繁體)‬ | zh-yue-hant | +/-

Parameterization

This immersion of the Klein bottle into R3 is given by the following parameterization. Here the parameters u and v run from 0 to 2π and r is a fixed positive constant.

For 0 \leq u < \pi:

x = 6 \cos u(1 + \sin u) + 4r\left(1 - \frac{\cos u}{2}\right) \cos u \cos v
y = 16 \sin u + 4r\left(1 - \frac{\cos u}{2}\right) \sin u \cos v
z = 4r\left(1 - \frac{\cos u}{2}\right) \sin v

For \pi \leq u < 2\pi:

x = 6 \cos u(1 + \sin u) - 4r\left(1 - \frac{\cos u}{2}\right) \cos v
y = 16 \sin u\,
z = 4r\left(1 - \frac{\cos u}{2}\right) \sin v

Mathematica source

KleinBottle[r_:1] =
 Function[{u, v},
   UnitStep[Sin[u]]
   {
       6 Cos[u](1 + Sin[u]) + 4r(1 - Cos[u]/2) Cos[u]Cos[v],
       16 Sin[u] + 4r(1 - Cos[u]/2) Sin[u]Cos[v],
       4r(1 - Cos[u]/2) Sin[v]
   }
   + (1 - UnitStep[Sin[u]])
   {
       6 Cos[u](1 + Sin[u]) - 4r(1 - Cos[u]/2) Cos[v],
       16 Sin[u],
       4r(1 - Cos[u]/2) Sin[v]
   }
 ]

 ParametricPlot3D[Evaluate[KleinBottle[][u, v]], {u, 0, 2Pi}, {v, 0, 2Pi},
   PlotPoints -> {50, 19}, Boxed -> False, Axes -> False,
   ViewPoint -> {0.454, -2.439, -2.301}]

File history

Click on a date/time to view the file as it appeared at that time.

Date/Time Dimensions User Comment
current 23:39, 12 December 2006 240×300 (64 KB) Mahahahaneapneap (pngcrushed)
10:21, 15 September 2006 240×300 (77 KB) Dark knight (Added transparency, unfortunately dimension rose)
02:23, 4 March 2005 240×300 (57 KB) Dbenbenn (losslessly compressed with pngcrush, 20% smaller)
17:44, 3 March 2005 240×300 (71 KB) Fropuff (Standard immersion of a Klein bottle. {{PD}})
The following pages on Schools Wikipedia link to this image (list may be incomplete):

The 2008 Wikipedia for Schools was sponsored by a UK Children's Charity, SOS Children UK , and consists of a hand selection from the English Wikipedia articles with only minor deletions (see www.wikipedia.org for details of authors and sources). See also our Disclaimer.